
(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 7, 2024 

1002 | P a g e  

www.ijacsa.thesai.org 

A Novel Smart System with Jetson Nano for Remote 

Insect Monitoring

Thanh-Nghi Doan1, 2, Thien-Hue Phan3 

Faculty of Information Technology, An Giang University, An Giang, Vietnam1 

Vietnam National University, Ho Chi Minh City, Vietnam2 

Graduate Students, University of Information Technology, Vietnam National University, Ho Chi Minh City, Vietnam3 

 

 
Abstract—Insect monitoring is vital for agricultural 

management and environmental conservation, but traditional 

methods are labor-intensive and time-consuming. This paper 

introduces a novel smart system utilizing NVIDIA's Jetson Nano 

technology combined with object detection models for remote 

insect monitoring. The system automates the processes of 

detection, identification, and monitoring, thereby significantly 

improving the efficiency and accuracy of insect population 

assessments. The implementation of the YOLOv7 model on a 

dataset containing 10 insect species achieved a mAP@0.5 

accuracy of 77.2%. This enables farmers to take timely and 

appropriate measures to prevent pests and diseases, reducing 

production costs and protecting the environment. 

Keywords—NVIDIA Jetson Nano; insect monitoring; YOLOv7 

I. INTRODUCTION 

Insects are crucial to ecological health and agricultural 
ecosystems, pollinating crops and managing pest populations. 
Traditional monitoring of these insects is labor-intensive and 
resource-heavy. However, recent technological advances offer 
a solution through automation and real-time data processing. 
Innovations in sensor technology, machine learning, and 
computer vision enable precise and continuous monitoring of 
insect populations. These automated systems enhance data 
collection efficiency and provide valuable insights into insect 
behavior, aiding researchers and farmers in making informed 
decisions. This leads to better crop protection and ecological 
balance, supporting sustainable agriculture and environmental 
conservation. 

The Jetson Nano, with its powerful GPU capabilities and 
compact size, offers a promising platform for developing a 
remote insect monitoring system. The literature cited presents a 
comprehensive overview of research endeavors aimed at 
revolutionizing insect monitoring and detection through 
innovative technological solutions. The authors in study [1] 
delve into the realm of computer vision techniques tailored 
specifically for automated insect monitoring and detection, a 
domain ripe for the development of cutting-edge image 
processing algorithms on platforms like the Jetson Nano. 
Expanding on this foundation, article [2] meticulously 
scrutinizes deep learning methodologies designed for insect 
detection and classification. Such insights not only enrich our 
understanding but also pave the way for implementing on-
device machine learning models seamlessly integrated with 
Jetson Nano's capabilities. 

Moreover, the discourse in study [3] sheds light on the 
integration of wireless sensor networks in environmental 
monitoring applications, offering invaluable insights into the 
design and deployment of sensor nodes for remote insect 
monitoring, a critical aspect of effective surveillance. These 
insights are crucial for ensuring that the sensor nodes are not 
only strategically placed but also robust and reliable in various 
environmental conditions. Additionally, researchers in study 
[4] review energy-efficient communication protocols tailored 
for IoT applications, a knowledge pool essential for optimizing 
communication between Jetson Nano devices and remote 
servers, ensuring seamless data exchange. This optimization is 
pivotal for maintaining long-term operation and minimizing 
energy consumption, which is vital for remote monitoring 
systems that often rely on limited power sources. By 
leveraging these protocols, the efficiency and reliability of 
remote insect monitoring systems can be significantly 
enhanced, leading to more accurate and timely data collection 
and analysis. 

Furthermore, the authors in study [5] elucidate various data 
fusion techniques essential for integrating information from 
diverse sensors in environmental monitoring systems, a pivotal 
step towards enhancing the accuracy and reliability of insect 
monitoring data. The challenges and opportunities associated 
with deploying IoT systems in remote environments are 
thoroughly explored by researchers in study [6], offering 
pragmatic insights crucial for implementing smart systems for 
remote insect monitoring. Moreover, the researchers in study 
[7] explore the myriad applications of the NVIDIA Jetson 
Nano in edge computing, providing inspiring examples and 
case studies that could catalyze the development of innovative 
smart systems for remote insect monitoring. 

Deep learning's prominence is reaffirmed in study [8], 
where the authors explore its effectiveness in automated insect 
pest detection for precision agriculture using image-based data. 
In [9], a real-time insect detection and classification system 
using convolutional neural networks (CNNs) on image data is 
proposed, offering a pioneering and practical approach. The 
authors in study [10] provide a detailed overview of image-
based insect identification techniques employing deep learning, 
enhancing our knowledge of advanced methodologies. Article 
[11] presents a sophisticated framework integrating image-
based and sensor-based data for real-time insect pest 
monitoring in greenhouse crops, highlighting the synergy 
between different data modalities. In study [12], a fusion 
approach combining data from multiple sensors for improved 
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insect pest detection in precision agriculture is proposed, 
emphasizing the value of diverse data sources for thorough 
analysis. Finally, the authors in study [13] underscore the real-
time processing capabilities of Jetson Nano for deep learning-
based insect detection, demonstrating its potential as a key 
device for future advancements in this field. 

As a result, this paper proposes a novel smart system with 
Jetson Nano for remote insect monitoring that is low in cost, 
efficient, has a fast response time, and is simple to install and 
implement in practice using hardware devices with limited 
configuration. The total cost of our proposed system is detailed 
in Table I. The main contributions of the paper include: 

 A novel system utilizing the NVIDIA Jetson Nano and 
object detection models for real-time detection and 
classification of pest insects. This system significantly 
enhances the efficiency and accuracy of insect 
population assessments. 

 The implementation of the YOLOv7 model on a dataset 
of 10 insect species resulted in a mAP@0.5 accuracy of 
77.2%. This demonstrates the system's capability to 
identify and distinguish between 10 common insect 
groups with high precision. 

 The system is designed to be low-cost, efficient, and 
easy to install and implement using hardware devices 
with limited configuration, making it accessible for 
practical agricultural applications. 

 Leverages deep learning methodologies, image 
processing algorithms, and wireless sensor networks to 
create an integrated solution for remote insect 
monitoring. 

The rest of the article is arranged as follows. Section II 
describes the materials and methods used to describe overview 
of our system, general system design and setup, NVIDIA 
Jetson Nano Developer Kit, insect trap, insect detection model. 
The experimental results and discussion are reported in Section 
III. Section IV presents the conclusions, limitations, and 
recommendations for future research. 

TABLE I. THE DETAIL COST OF OUR SYSTEM 

Device Price in USD 

NVIDIA Jetson Nano 224.32  

Insect traps 62.97 

UV Lights Attract Insects 4.72 

Sticky insect trap 1.57 

YOLO test fee 20 

128GB memory card 25.58 

Total cost 339.16 

II. MATERIALS AND METHODS 

A. System Overview 

In the initial stage, we collected and labeled image data of 
pest insects for training and evaluating the CNN model. Next, 

YOLO object detection models were trained on the insect 
dataset. We evaluated the model parameters based on the 
trained models. From the evaluation, the best model with the 
appropriate parameters is selected for object recognition on the 
Jetson Nano device. Then, the trained model is deployed on the 
Jetson Nano device. Finally, we implemented the real-time pest 
insect recognition system in the fields.  Overview of our real-
time insect detection system is illustrated in Fig. 1. 

 
Fig. 1. Overview of our real-time insect detection system. 

The Jetson Nano's MIPI CSI-2 camera serves as a 
monitoring system for object detection. Subsequently, the 
captured images of the objects are detected through OpenCV 
data processing and YOLO data classification on the Jetson 
Nano. The process is illustrated in Fig. 2. 

 
Fig. 2. General system design. 

B. Equipment Setup 

1) Jetson Nano developer kit: The Jetson Nano Developer 

Kit [15] is a compact computer developed by NVIDIA for use 

in artificial intelligence (AI) applications, particularly in the 

field of real-time image and video processing. It allows users 

to run multiple neural networks in parallel for image 

processing applications. It delivers the performance to run 

modern AI workloads in a small, energy-efficient (consuming 

as little as 5W), and cost-effective form factor. The NVIDIA 

Jetson Nano consists of nine basic components, as illustrated 

in Fig. 3. 
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Fig. 3. NVIDIA Jetson Nano hardware overview. 

The NVIDIA Jetson Nano Developer Kit is the smallest 
member of the Jetson product family, designed for portability 
and powered by a backup battery when mains power is 
unavailable. This makes it ideal for use outside of the office or 
on the go. The kit features a powerful GPU-supported system 
that includes a 64-bit quad-core ARM Cortex-A57 CPU, 4GB 
of RAM, and a video processor capable of 4K 30fps encoding 
and 4K 60fps decoding, as shown in Table II. 

TABLE II. NVIDIA JETSON NANO DEVELOPER KIT B01 SPECIFICATIONS 

Items Technical Specifications 

Model NVIDIA Jetson Nano Developer Kit B01 (upgrade version 

with 2 cameras) 

GPU 128-core Maxwell 

CPU Quad-core ARM A57 @1.43 GHz 

Memory 4 GB 64-bit LPDDR4 25.6 GB/s 

Model NVIDIA Jetson Nano Developer Kit B01 (Upgraded 

version with dual cameras) 

Storage microSD 

Video Encode 4K @ 30 | 4x 1080p @ 30 | 9x 720p @ 30 

Video Decode 4K @ 60 | 2x 4K @ 30 | 8x 1080p @ 30 | 18x 720p @ 30 

Mechanical 69.6 mm × 45 mm, 260-pin edge connector 

Entire set 100mm × 80mm × 29mm 

Camera 2x MIPI CSI-2 DPHY lanes 

Connectivity Gigabit Ethernet, M.2 Key E 

Display HDMI and display port 

USB 4x USB 3.0, USB 2.0 Micro-B 

Others GPIO, I2C, I2S, SPI, UART 

Additionally, it supports PCIe and USB 3.0 slots. The 
Jetson Nano delivers 472 GFLOPS for accelerated execution of 
modern AI algorithms. With a quad-core ARM 64-bit CPU, an 
integrated 128-core NVIDIA GPU, and 4GB of LPDDR4 
memory, it can simultaneously run multiple neural networks 
and process high-resolution sensors. 

Utilizing two cameras on NVIDIA Jetson Nano B01 offers 
several significant advantages. Firstly, it allows for image 
capture from two different angles, enhancing observational 
capabilities and covering a wider area. Secondly, with 
stereoscopic vision capabilities, the two cameras can create 3D 
images from different viewpoints, aiding in depth and distance 
determination, which is crucial for autonomous robots, object 
recognition, and navigation. Thirdly, the dual image sources 
enable the system to compare and eliminate errors or noise, 
increasing data accuracy and reliability. Fourthly, this setup 
optimizes performance and simplifies connections, removing 
the need for external adapters or USB ports. Fifthly, the Jetson 
Nano B01's design includes two CSI connectors, allowing for 
the simultaneous connection of multiple cameras, making it 
ideal for multi-channel applications. Lastly, NVIDIA provides 
robust software support for CSI cameras through Gstreamer 
and supporting libraries, making it easy to use commands like 
nvgstcapture to test and capture images from the cameras. 

2) Remote monitoring insect trap: Weather is crucial to 

agricultural production, significantly impacting crops, 

livestock, and the environment, even with minor fluctuations. 

The outbreak and spread of pests and diseases are also highly 

dependent on weather conditions. Research has shown that 

temperature, humidity, rainfall, wind, and microclimate all 

influence the growth, reproduction, and population density of 

brown rice planthoppers. To address this, we propose a remote 

monitoring insect trap featuring an innovative model of 

integrated light traps that operate automatically based on 

sensor data, as shown in Fig. 5. These automatic light traps 

will continuously collect, analyze, store, and, if necessary, 

alert data, transmitting it to a network system. The newly 

trained model is eventually deployed to the Jetson Nano 

camera, as illustrated in Fig. 4. 

 

Fig. 4. Real-time insect identification system with Jetson Nano.
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Fig. 5. Remote monitoring insect trap. 

Based on the biological characteristics and behavior of 
certain harmful insects, insect traps can serve as an effective 
alternative to directly spraying pesticides onto plants, reducing 
the use of potentially harmful chemicals. By integrating 
multiple trapping methods, we can enhance overall 
effectiveness. Some possible methods to combine include: 

 Attracting insects using sex pheromones. 

 Attracting insects using bio-based traps (e.g., sweet 
sticky traps). 

 Attracting insects using blue or yellow sticky traps. 

 Attracting insects using light traps. 

The study introduces a design for a light-induced insect trap 
with a modular design that enables straightforward assembly 
and disassembly of trap components. Detailed images 
illustrating the placement of devices within insect traps are 
depicted in Fig. 6. This design allows for easy relocation of the 
trap, operates effectively under various weather conditions, 
ensures high durability, and uses materials that are safe for 
both humans and the environment. Additionally, the modular 
nature of the trap makes it adaptable to different pest 
management needs and scalable for larger agricultural 
applications. This approach not only targets pest reduction but 
also promotes sustainable farming practices by minimizing the 
reliance on chemical pesticides, thereby protecting the 
ecosystem and promoting biodiversity. 

 
Fig. 6. Detailed images of device placement in insect traps. 

3) Light attracts insects: Light is crucial for attracting 

insects to traps, with blue and ultraviolet (UV) light being 

particularly effective [21], [22]. Mosquitoes, flies, and moths 

are especially drawn to these wavelengths. Additionally, white 

light, which includes both blue and UV components, can also 

serve as an attractant. Using light to lure insects into traps is 

an effective, safe, and eco-friendly method for managing 

insect populations. 

Examining the attractiveness of different light components 
enhances our understanding of their efficacy in insect 
attraction. Blue and UV light, with shorter wavelengths, are 
highly attractive to insects due to their eyes' sensitivity to these 
wavelengths. In contrast, red light has the lowest attraction 
capability, drawing only about 2% of insects in nature. Yellow 
light, with a slightly shorter wavelength and higher energy than 
red light, attracts approximately 4–5% of insects. Green light, 
being neutral and abundant in natural light, has average 
attraction capabilities, drawing around 7–8% of insects. The 
blue light spectrum, characterized by its short wavelength and 
high energy, is particularly enticing to insects, attracting 
roughly 20–23% of those present in nature. UV light, though 
not visible to the human eye, surpasses even blue light in 
energy and attractiveness, enticing approximately 40–50% of 
insects. Understanding these nuances in light spectra helps 
identify the most effective options for insect control. 

As demonstrated by the list of light types and their 
respective insect attraction capabilities, UV lights exhibit 
exceptional ability to attract insects, drawing in approximately 
40–50% of insect populations in nature. This remarkable 
effectiveness prompted our decision to use UV lights as the 
primary insect attractant in this research endeavor. The 
specifications of the UV insect attractant lamp are shown in 
Table III. The Conopery UV black light lamp, emitting purple 
light, operates on a convenient 220V power source, allowing 
for easy electrical plug-in. Its compact dimensions (5.2 cm by 
17.5 cm) facilitate easy setup for insect trapping, as shown in 
Fig. 7. 

TABLE III. THE SPECIFICATIONS OF THE UV INSECT ATTRACTANT LAMP 

Product Name 
Conopery UV Black Light Lamp (Purple 

Light) 

Power Source 220V 

Wavelength Range 300 ~ 400 nm 

Peak Wavelength 365nm 

Lifespan 8000 hours 

Dimensions 5.2cm x 17.5cm 

Type of Lamp 3U/36W Spiral 
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Fig. 7. UV lights attract insects 

The choice of UV light in this study is also supported by its 
wide application in various ecological and agricultural settings. 
UV lights are known for their ability to attract a broad 
spectrum of insect species, making them highly versatile in 
different environments. The high attraction rates of UV lights 
not only enhance the efficiency of insect traps but also 
contribute to more accurate population assessments and 
monitoring in ecological studies. 

Moreover, UV light traps have been shown to reduce the 
need for chemical insecticides, thus promoting environmental 
sustainability. By minimizing chemical usage, these traps help 
maintain ecological balance and reduce the risk of pesticide 
resistance among insect populations. This aligns with 
integrated pest management (IPM) strategies that emphasize 
sustainable and environmentally friendly pest control methods. 

In practical applications, the Conopery UV black light lamp 
has been selected for its durability and ease of use in field 
conditions. Its design allows for seamless integration into 
various trapping setups, ensuring reliable operation even in 
remote or challenging environments. The lamp's specifications, 
including its wavelength emission, power requirements, and 
physical dimensions, have been carefully considered to 
maximize its effectiveness in attracting target insect species. 

Overall, the deployment of UV light as an insect attractant 
in this study exemplifies the integration of scientific 
understanding and practical application. By leveraging the 
unique properties of UV light, this research aims to contribute 
valuable insights into insect behavior and improve pest 
management practices. The findings from this study could 
inform future developments in trapping technology and 
enhance the effectiveness of insect control strategies across 
diverse settings. 

4) Insect sticky trap: This is a flat surface used to trap 

insects. One challenge is to maintain the shape of the insect 

when it is caught in the trap and when it dies, so that the 

camera can recognize it. The solution in this study is to use an 

insect sticky trap, as illustrated in Fig. 8. 

 
Fig. 8. Insect sticky trap. 

C. Insect Image Dataset 

Creating a dataset requires thorough planning and 
execution to ensure its quality and relevance for the intended 
task. Initially, the scope and purpose of the dataset are defined, 
specifying criteria such as data types, sources, and required 
volume. Potential sources like public repositories, APIs, or 
manual data collection methods are then identified. Data 
collection protocols are implemented with ethical guidelines 
and privacy considerations in mind, ensuring proper consent 
and anonymization where necessary. Techniques such as web 
scraping, surveys, or crowd-sourcing are employed to gather 
diverse and representative samples. 

The dataset is iteratively refined through processes like data 
cleaning, validation, and augmentation to enhance usability and 
reliability. Thorough documentation including metadata and 
usage guidelines is provided to facilitate accessibility and 
reproducibility for researchers and practitioners. 

To evaluate the effectiveness of a new pest insect 
recognition system, insect images collected from the internet 
were utilized to train convolutional neural network (CNN) 
models. The primary objective was to develop a system 
capable of identifying and distinguishing 10 common insect 
groups. The dataset used, Insect10_Bbox [14], consisted of 
2,335 images categorized into 10 classes. 

To ensure effective learning and accurate evaluation of the 
models, the Insect10_BBox dataset was divided into three sets: 
training, validation, and testing, in a ratio of 7:2:1. This 
division ensures sufficient representative images for each 
insect class in every subset of the dataset. 

Specifically, the training set comprises 1,633 images, the 
validation set contains 467 images, and the testing set includes 
235 images. This balanced split enables the model to encounter 
various examples of each insect type, thereby enhancing its 
ability to accurately recognize and distinguish them. 
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D. YOLO 

1) YOLO algorithm: The You Only Look Once (YOLO) 

algorithm is an object detection method. YOLO utilizes a 

unified model to simultaneously predict bounding boxes and 

the probabilities of classes within these boxes [16]. This 

method operates by applying a single convolutional neural 

network across the entire input image, thereby quickly 

providing predictions. Compared to traditional classification 

methods, YOLO is trained on a loss function directly related 

to detection performance, allowing the model to learn the best 

way to comprehensively detect objects, as illustrated in Fig. 9. 

 
Fig. 9. YOLO algorithm for detecting insects. 

In general, during classification, we determine labels from 
the data being tested. However, in YOLO, classification is 
combined with localization by providing additional 
information about the object's location in the form of bounding 
boxes. Each bounding box B consists of five predictions: x, w, 
y, h, and confidence score. The coordinates (x, y) represent the 
center of the box, determined by grid cells. Meanwhile, w 
(width) and h (height) predict the size of the object in the 
overall image [17]. The confidence score is typically used to 
represent the Intersection Over Union (IOU), a measure of the 
correlation between the predicted box and the actual object's 
box. 

2) YOLOv7: YOLOv7 is a highly impactful algorithm in 

the computer vision and machine learning communities, 

surpassing previous object detection models and YOLO 

versions in both speed and accuracy [18]. It requires cheaper 

hardware and can be trained quickly on small datasets without 

pre-trained weights. Key features include an efficient 

backbone network, advanced optimization strategies, and 

novel loss functions, making it suitable for real-time 

applications. 

YOLOv7’s versatility allows it to be effectively used in 
domains like autonomous driving, surveillance, and medical 
imaging. It is easy to deploy, compatible with common 
machine learning frameworks, and adaptable for specific tasks, 
such as agricultural technology and retail. Additionally, 
YOLOv7 supports edge computing solutions, enabling real-
time detection on devices with limited processing power. 
Overall, YOLOv7 sets new standards for performance and 
efficiency in object detection, driving innovation across various 
fields. The architecture of YOLOv7 is shown in Fig. 10. 

 
Fig. 10. YOLOv7 architecture. (Different colors represent the various 

functions performed within a single block). 

E. Training Model 

The dataset used for training the model is the 
Insect10_BBox of the authors in [14]. This dataset includes 10 
insect classes including ‘Acalymma_vittatum’, 
‘Achatina_fulica’, ‘Alticini’, ‘Asparagus_beetles’, 
‘Aulacophora_similis’, ‘Cerotoma_trifurcata’, ‘Dermaptera', 
‘Leptinotarsa_decemlineata’, ‘Mantodea’, and ‘Squash_bug’. 
The number of images for each insect class in the dataset used 
for training, validation, and testing the model is presented in 
Table IV. 

TABLE IV. TABLE OF INSECT QUANTITIES IN THE INSECT10_BBOX 

DATASET 

STT Insect Name Train Val Test 

1 Acalymma_vittatum 115 33 17 

2 Achatina_fulica 258 74 36 

3 Alticini 193 55 28 

4 Asparagus_beetles 89 25 13 

5 Aulacophora_similis 113 32 17 

6 Cerotoma_trifurcata 86 25 17 

7 Dermaptera 111 32 16 

8 Leptinotarsa_decemlineata 234 67 34 

9 Mantodea 185 53 26 

10 Squash_Bug 249 71 36 

 Total 1633 467 235 
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The training process for the YOLOv7 model is carried out 
using Google Colab, a free cloud computing service that 
provides a powerful Jupyter Notebook environment. Google 
Colab also offers access to GPUs to accelerate the model's 
training speed. 

The first step begins by downloading the source code of 
YOLOv7 from GitHub and installing other necessary 
supporting libraries to run YOLOv7 on Google Colab in the 
requirement.txt file. Then, we proceed to pretrain the YOLOv7 
model to evaluate its detection performance. Next, we upload 
the Insect10_BBox dataset to Google Drive and connect it to 
Google Colab. Additionally, we modify the data configuration 
file and YOLOv7 cfg file according to the number of object 
classes in the dataset. 

Start training with the YOLOv7 model on the 
Insect10_BBox dataset. The configuration of the data.yaml file 
includes class names as the names of insect objects in the 
Insect_10BBox dataset; the content of dataset yaml file is 
shown in Table V. 

TABLE V. DATASET YAML FILE 

Item Value 

path ‘/content/gdrive/My Drive/QL/Insect10_BBox’ 

train ‘/content/gdrive/My Drive/QL/Insect10_BBox/images/train’ 

val ‘/content/gdrive/My Drive/QL/Insect10_BBox/images/val’ 

test ‘/content/gdrive/My Drive/QL/Insect10_BBox/images/test’ 

nc 10 

names [‘acalymma’, ‘alticini’, ‘Squash_Bug’, ‘asparagus’, ‘aulacophora’, 

‘dermaptera’, ‘leptinotarsa’, ‘mantodea’, ‘Achatina_fulica’, 
‘Cerotoma_trifurcata’] 

Finally, the YOLOv7 model was trained using the prepared 
training dataset. The training process will iterate through 
batches of images and update the model parameters based on 
the dataset used. During training, researchers can monitor 
evaluation metrics such as loss rate, accuracy, or mAP (mean 
average precision) to assess the model's performance. These 
evaluations can be conducted on validation or test datasets. 
Once the training process is complete, the model will be saved 
in an appropriate format. The model will undergo testing, and 
if the obtained results do not meet the requirements, the model 
will continue training until it fits the predefined parameters. 

F. Evaluation Metrics 

In our study evaluating the performance of an insect 
detection system, we employed a confusion matrix to provide a 
thorough understanding of its classification capabilities [19]. 
This matrix, a fundamental tool in classification model 
assessment, tabulates the counts of true positive (TP), true 
negative (TN), false positive (FP), and false negative (FN) 
predictions. Here, we elucidate these components: 

 True Positives (TP): Insects correctly identified by the 
system. 

 True Negatives (TN): Non-insects correctly identified 
as such. 

 False Positives (FP): Non-insects erroneously identified 
as insects (Type I error). 

 False Negatives (FN): Insects erroneously identified as 
non-insects (Type II error). 

Leveraging these values, we computed several performance 
metrics: Accuracy, Precision, and Recall. Accuracy measures 
the ratio of correctly identified insects to the total number of 
insects in the test dataset. Precision, a critical metric, delineates 
the ratio of true positive detections to the sum of true positive 
and false positive detections. Similarly, recall assesses the ratio 
of true positive detections to the sum of true positive and false 
negative detections. Additionally, we employed the F1-score, 
serving as the harmonic mean of precision and recall, to 
provide a balanced evaluation of the system's performance. 
These performance metrics were calculated using the following 
equations: 

Accuracy = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
× 100%  (1) 

Precision = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
× 100%  (2) 

Recall = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
× 100%   (3) 

To assess robustness, we tested the system across various 
environmental conditions, such as different lighting and 
backgrounds, to ensure consistent performance. The evaluation 
process should also include computational efficiency, assessing 
the system's processing speed and resource utilization. Finally, 
user feedback and field testing provide practical insights into 
the system's usability and real-world effectiveness, enabling 
further refinements. 

G. Deployment on NVIDIA Jetson Nano 

1) Preparation for Installation: To proceed with the 

installation of the Jetson Nano device, the following items 

have been prepared: 

 Jetson Nano Developer Kit equipment box, including: 
NVIDIA Jetson module and reference carrier board. 

 MicroSD card (recommended minimum 32GB UHS-1). 

 MicroSD card reader to USB port. 

 USB keyboard and mouse. 

 Computer monitor (HDMI or DP). 

 5V-4A power supply. 

 Pre-trained YOLO model. 

 NVIDIA Jetpack. 

 BalennaEtcher software for booting the drive onto the 
microSD card. 

 SDCardFormatter software for formatting the microSD 
card. 

2) Device setup: Initially, the microSD card undergoes 

formatting using SDCardFormatter. Subsequently, the Jetpack, 

obtained via download, is to be flashed onto the microSD card 
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utilizing BalenaEtcher. Upon completion, the microSD card is 

to be inserted into the Jetson Nano. 

The Jetson Nano operates efficiently with a 5V-4A power 
supply, facilitating easy connection for powering and booting 
up. It supports HDMI connectivity to a monitor, enabling users 
to visualize the interface and outcomes of AI applications. 
Additionally, it features a Gigabit Ethernet port for network 
access, facilitating internet connection and LAN device 
connectivity. With four USB 3.0 ports and one Micro-B USB 
2.0 port, the Jetson Nano offers versatile connectivity options. 
The Micro-B USB 2.0 port serves dual purposes for power 
supply or device mode. 

Integrated with two cameras, the Jetson Nano enables direct 
connection for recognition tasks. Furthermore, it offers various 
interfaces including GPIO, I2C, I2S, SPI, and UART, 
facilitating connection of peripheral devices such as sensors, 
motors, and expansion modules. Fig. 11 presents description of 
these device connections. The actual configuration of external 
devices connected to the Jetson Nano is depicted in Fig. 12. 

 

Fig. 11. Description of device connections. 

 
Fig. 12. The actual configuration of external devices connected to the Jetson 

Nano. 

The green LED next to the MicroUSB connector will light 
up. During the initial boot, the tool will guide users through the 
setup process, which includes: 

 Reviewing and accepting the NVIDIA Jetson EULA 
software. 

 Selecting the system language, keyboard layout, and 
time zone. 

 Creating a username, password, and computer name. 

For the APP partition size, we use the maximum 
recommended size. The setup process will take approximately 
one minute. After completion, the computer screen will boot up 
as shown in Fig. 13. 

 

Fig. 13. The screen after configuration completion for Jetson Nano. 

3) Library setup: 

a) PyTorch: PyTorch offers a powerful and versatile 

deep learning framework built for Python. Backed by a 

thriving community and a rich ecosystem of tools, PyTorch 

excels in both research and production settings. It delivers 

seamless interoperability and optimized performance for your 

machine-learning projects. 

b) TorchVision: TorchVision is your one-stop shop for 

computer vision projects using PyTorch. It streamlines 

development by providing pre-trained models and image 

transformation tools. This powerful library bridges the gap 

between cutting-edge research and real-world applications on 

your Jetson Nano. 

c) CUDA: CUDA, the de facto standard for GPU 

acceleration, empowers you with high-performance computing 

tools. This comprehensive toolkit accelerates application 

development and unleashes the full potential of your deep 

learning PC or Jetson Nano. 

III. RESULTS AND DISCUSSION 

A. Model Training 

This study proposes a novel model utilizing the YOLOv7 
algorithm for real-time detection of harmful insects. The model 
is trained for 100 epochs with a batch size of 8, demonstrating 
high efficiency in identifying and classifying various insect 
species. Feature extraction and object detection training were 
conducted using different YOLOv7 models: YOLOv7, 
YOLOv7-X, and YOLOv7-W6. The comprehensive training 
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results, including metrics such as FPS, model size, precision, 
and recall, are detailed in Table VI, showcasing the 
effectiveness of the proposed approach in diverse 
environmental conditions. 

TABLE VI. YOLOV7 TRAINING RESULTS 

Dataset Models FPS 

Model 

size 

(MB) 

Precision 

(%) 

Recall 

(%) 

Insect10_Bbox 

YOLOv7 161 74.9 74.7 73.4 

YOLOv7-X 114 142.2 84.2 80.3 

YOLOv7-W6 84 162.7 89.6 82.5 

The corresponding confusion matrix for the trained 
YOLOv7 model was obtained and is presented in Fig. 14. This 
confusion matrix reflects the performance of the classifier 
when evaluated on the test set. The diagonal elements indicate 
the number of samples correctly predicted for each insect class. 
As illustrated in Fig. 14, the leptinotarsa class achieved the 
highest accuracy at 89%, whereas the acalymma class 
exhibited the lowest accuracy at 63%. 

To enhance the model's performance, attention should be 
directed towards improving the prediction results for the 
acalymma class. The misclassification rate for this class is 
13%, as indicated by the sum of the values in the white box of 
column 1, representing incorrect predictions into other classes. 
Additionally, there is a 24% false negative rate, where the 
model fails to detect the presence of an insect when one is 
actually present. This rate is the highest among all classes. 
Consequently, the accuracy in predicting the acalymma class is 
limited to 63%. 

 
Fig. 14. Confusion matrix for training the YOLOv7 model. 

The disparity in accuracy for the acalymma class can be 
attributed to a limited or lower quality dataset and high visual 
similarity with other classes, which confuses the model. To 
address this, several strategies are recommended: applying data 
augmentation techniques to increase the diversity of training 
samples, collecting more high-quality images of acalymma, 

fine-tuning the YOLOv7 model specifically for acalymma, 
implementing class rebalancing with weighted loss functions, 
and conducting feature analysis to highlight distinctive 
characteristics of acalymma. These approaches aim to improve 
the model's accuracy in predicting the acalymma class and 
enhance overall performance in insect classification tasks, with 
further experiments and validations needed for optimal results. 

B. Detect on NVIDIA Jetson Nano 

Upon completion of the training process, the YOLOv7 
model is employed for object detection in images and videos, 
as referenced in study [20]. The detection outcomes for single-
class insect identification are either displayed on the screen or 
saved to a file, as illustrated in Fig. 15. This procedure involves 
the model analyzing each frame or image to identify and 
classify insects based on the training it received. The results are 
then rendered visually on the screen with bounding boxes 
around detected insects, or alternatively, the data can be stored 
in a file for subsequent analysis. This dual approach allows for 
both immediate visual verification and detailed post-
processing, enhancing the versatility and applicability of the 
detection system in various operational contexts. 

 

Fig. 15. Single-class insect detection. 

 

Fig. 16. Multiclass insect detection. 

Fig. 15 and Fig. 16 present examples of insect object 
detection performed on the Jetson Nano, demonstrating both 
single-class and multiclass detection capabilities using images 
from the test dataset. These figures highlight the accuracy and 
efficiency of the model in identifying various insect species 
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under different conditions. Table VII provides comprehensive 
details on the system's performance metrics, including frames 
per second (FPS) and precision, offering insights into the 
computational efficiency and detection accuracy of the 
YOLOv7 model on the Jetson Nano platform. This 
performance evaluation is critical for understanding the 
model's applicability in real-time insect monitoring and 
detection scenarios, ensuring reliable and efficient operation in 
practical applications. 

TABLE VII. INSECT RECOGNITION TEST RESULTS ON NVIDIA JETSON 

NANO 

Insect name 
Detection 

result 
FPS 

Precision 

(%) 

S
in

g
le-class 

o
b
ject d

etectio
n
 

Acalymma_vittatum 1 Acalymma 5,543 67% 

Achatina_fulica 
1 

Achatina_fulica 
5,735 66% 

Alticini 1 alticini 4,999 76% 

M
u
lticlass o

b
ject 

d
etectio

n
 

Alticini, Squash_Bug, 

Mantodea, 

Asparagus_bee 

1 alticicni, 

1 Squash_Bug, 
1 mantodea, 

1 asparagus 

4,890 

Alticini 
83%, 

Squash_Bug 

93%, 
mantodea 

80%, 

asparagus 
91% 

We conducted real-time insect detection experiments using 
NVIDIA Jetson Nano. The results indicate an approximate 
frame rate of 4 frames per second (FPS), as illustrated in Fig. 
17. This frame rate demonstrates the capability of the Jetson 
Nano to perform real-time processing despite its limited 
computational resources. The experiments were designed to 
evaluate the practical applicability of the YOLOv7 model in 
field conditions, ensuring that the system can effectively detect 
and classify insects in real-time. The findings highlight the 
balance between detection accuracy and processing speed, 
crucial for developing efficient and responsive insect 
monitoring systems. Further optimization and hardware 
enhancements could potentially improve the FPS, making the 
system even more robust for large-scale deployments. 

 
Fig. 17. Real-time insect detection. 

IV. CONCLUSION AND FUTURE WORK 

The novel smart system using the Jetson Nano for remote 
insect monitoring provides a scalable, efficient, and accurate 

method to assess and manage insect populations in various 
ecosystems. Its successful implementation can lead to more 
sustainable agricultural practices and enhanced environmental 
conservation efforts. Our system was developed based on the 
YOLOv7 model due to its lightweight convolutional neural 
network, which allows for effective insect pest detection and 
classification. This technology can be integrated into hardware 
accessible to farmers, enabling its use in diverse situations to 
protect crops from pests. Our method offers numerous 
advantages, including real-time insect identification, low cost, 
simple implementation, and practical applicability. Numerical 
results demonstrated that the system achieved a classification 
accuracy of 77.2% with mAP@0.5 on the Insect10 dataset. 
However, this mAP accuracy is still lower than what is 
required for effective insect detection in agricultural 
production. Future work will focus on refining the algorithms, 
expanding the range of detectable insect species, and 
integrating larger datasets to enhance the system's accuracy and 
overall effectiveness. 
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